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FLAT-SPHERE PERSPECTIVE

Fernando R. Casas™

Abstract—In this paper a new system of visual representation, Fla;-Sphere Perspective, is developed. With Flat-
Sphere Perspective, an image of the entire visual space around an observer can be represented on a flai surface. The
system integrates in a coherent and continuous image the many instantaneous views a human observer perceives as
he turns his head.

This new perspective system furnishes the contemporary artist with a new representational format that
corresponds more closely 10 the geometrical and perceptual principles governing visual perception than any other

system hitherto devised.

[. INTRODUCTION

For the last 500 years, human beings have been creating two-
dimensional representations of the visual three-dimensional
world guided by a system of representation called Central
Convergent Perspective (CCP). Developed primarily during the
Renaissance, CCP has come to us as a set of concepts and
principles which provide: (1) a geometrical analysis of the
human visual field, and (2) a way to represent that visual field on
a surface. CCP’s considerable success in representing the visual
world is evident in that many pictures constructed with CCP can
actually ‘fool the eye’ of an observer.

Although the merits and usefulness of CCP as a system of
visual representation are undeniable, it has become increasingly
clear that the system is both limited and flawed. In this paper a
new system of perspective, Flat-Sphere Perspective, will be
developed which, it will be argued, captures more adequately
than CCP the range and geometrical nature of the visual world.

In the first section of this paper some of the shortcomings of
CCP are briefly examined. In the following sections, Spherical
Perspective and then Flat-Sphere Perspective are developed.

In a second study, Flat-Sphere Perspective will be refined and
developed further into Polar Perspective. With Polar
Perspective it is possible to create perspective images of more
than three dimensions which are perfectly coherent and
nonambiguous.

II. THE SHORTCOMINGS OF CENTRAL CONVERGENT
PERSPECTIVE

A very unremarkable, yet fundamental, fact about human
visual perception is that a person can turn his gaze in any
direction around him—up, down, left, right, front, back—and
find the visual world. This simply means that, as human beings
endowed with vision, we are completely surrounded by a visual
world. It is as if we were in the middle of a balloon, such that in
any direction we turn our gaze we find that balloon (Fig. 3, top).
This imaginary balloon is usually referred to as the sphere of
vision.

But we can see the visual world surrounding us only
successively in discrete chunks. We cannot see the totality of the
surrounding world at once because our sense of sight is such that
it furnishes us at any single moment with only a partial view of
the total visual world. Although we see only one portion of the
;ntire visual world at a time, the visual world does not present
itself as a succession of disconnected chunks of space, but asone
and the same visual space.

*Artist and philosopher. 1203 Bartlett No. 3, Houston, TX 77006,
U.S.A. (Received 10 Nov. 1981.)

If the span of our instantaneous visual field were larger than it
is, as one finds it to be in certain animals, then we would see
more of the sphere of vision at one time [1]. In principle, there is
no reason that we could not imagine ourselves, or another sort
of being, as having evolved with a visual apparatus capable of
perceiving the totality of the surrounding visual space at once.

How would the world look to us if we could see all around at
once? What kind of perspective is created on a spherical
perceptual image-surface? Is it possible to create a flat image
corresponding to the all-around perception and, if so, how? To
answer these questions, another question must first be
answered. Is it possible to analyze adequately the perspective of
the spherical visual field with CCP?

The answer to this question is no, CCP cannot capture the
range and geometry of the all-around perception because CCP
developed from an analysis of the limited, instantaneous visual
field which CCP conceived as a flat surface. CCP wrongly
assumed the geometry of the instantaneous visual field to be that
of an Euclidean flat surface, commonly called a picture plane
(Fig. 1). CCP’s picture plane will never be able to capture the
range of view of the sphere of vision, for it should be clear that
through the window that a picture plane opens, however large it
is conceived to be, an observer will be able to see only one side of

Fig. 1. Central Convergent Perspective’s picture plane and the three spatial
axes.
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the entire visual world at a time. On the other hand, the spherical
visual field allows an observer to see in every direction at once.

Apart from the geometry of the field itself, CCP also analyzes
roughly two of the spatial dimenstons of the three-dimensional
perceptual image that appear on the visual fields as dimensions
parallel to the two dimensions of the picture plane. Of the three
illusionistic spatial dimensions (x,y,z) represented in Fig. 2, top
(the perspective schema of CCP) [2], the x and y dimensions
are parallel to the two dimensions of the representational plane
(or picture plane). The x and y dimensions of the three-
dimensional image are parasitic on the two dimensions of the
plane of representation. Quite differently, the dimension of
depth (z), which does not exist on the representational plane, is
given totally by illusionistic means, i.e. the depth dimension is
not parallel to any of the dimensions of the image-surface so it
appears to vanish into the distance, creating the phenomenon of
convergence.

CCP necessarily construes the three-dimensional space
present in the visual field as a three-dimensional Euclidean
Space because the Euclidean geometry of the picture plane is
automatically transferred to the three-dimensional image when
two of the dimensions of the image are given as parallel to the
Euclidean dimensions of the picture plane. Consequently, with
the principles and concepts of CCP it is impossible to create an
image of a three-dimensional space which is not Euclidean [3].

CCP gives rise to anomalous images such as the famous
Column Paradox. These anomalous constructions exist
precisely because CCP conceives the instantaneous visual field
as flat. When these constructions are conceived as projected on a
concave visual field (part of a sphere with the observer at the
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Fig. 2. (Top) Central Convergent Perspective schema. (Bottom) Four cubes
in Central Convergent Perspective.

center), they do not exhibit the anomalies that are present when,
they are projected on a plane [4].

CCP’s picture plane functions like a window into another:
world because it creates arbitrary frames that delimit the 3-.
dimensional space that always extends beyond the limits of the:
picture plane. (The x and y lines of the CCP schema can be:
extended infinitely.) The circumscribed picture-plane, by
necessity, will never provide more than a partial view of the
Euclidean space of its image. So, although the arbitranly
bounded picture plane does capture the peculiar window-like
nature of any instantaneous human visual perception, it is.
unable, in principle, to contain an image of the whole of a visual
space. Since CCP’s picture plane cannot possibly stand as a
model for an all-around perception of the world. how should the
visual field of an observer who sees instantaneously the entire
visual space surrounding him be conceived?

The answer is that this visual field should be conceived as a
transparent spherical surface, the balloon mentioned earlier,
with the observer in the center of the sphere (Fig. 3. top). Unlike
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Fig. 3. (Top) The sphere of vision and the three spatial coordinates.
(Bottom) The Spherical Perspective schema on an opaque sphere.
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Flar-Sphere Perspective 3

the CCP model, this model captures the following essential

features of the perception of visual space that we experience:

(1) Asan actual observer encounters the visual world in any

direction, he turns his gaze; similarly, the observer in the
center of the sphere encounters the sphere surrounding
him.

(2) As the surrounding visual world exhibits no boundaries
or breaks of any kind, similarly, the spherical surface
surrounds the viewer with perfect and boundless
continuity.

(3) Actual observers, after a full turn of their gaze around
visual space, find that their gaze has returned to the same
visual spot; similarly, after a full turn, the observers find
their gaze returns to the same spot on the spherical
surtace.

The spherical image-surface represents more adequately than
CCP's picture plane the perceptual and spatial relations
between a human observer and the visual world around him.
The sphere, unlike the plane, captures the fundamental fact that
human beings do actually see inevery direction although it takes
them some time to do it. Every and any instantaneous view
should be conceived as a portion of a more fundamental visual
apprehension of the sphere of vision as a whole. Consequently,
the instantaneous visual field should be conceived, not as a flat
plane, but as a concave surface that is a portion of a spherical
surface.

II1. MATHEMATICAL AND GRAPHICAL MAPS

Although there exists in the literature a clear understanding
that the sphere is a more adequate model for the visual field,
there is to my knowledge no development of a perspective
system for a spherical image-surface or a perspective system by
which the spherical surface can be mapped on a plane; namely,
Spherical Perspective and Flat-Sphere Perspective. One
important reason for this state of affairs is the well established
mathematical insight that the sphere and the plane are
topologically different surfaces, which means that a spherical
surface cannot be mapped onto a plane surface with perfect
uniqueness or continuity. Without contradicting the fact that,
mathematically speaking, a sphere cannot be mapped onto a
plane, it shall be seen that from the purely graphical point of
view it is possible to flatten a sphere. Accordingly, Flat-Sphere
Perspective, which is a system of visual representation, shall be
developed using concepts of graphical representation. The
concepts of point, line and surface are to be conceived as
graphical entities and, assuch, are to be distinguished from their
mathematical counterparts. Graphical points and lines are
visual or representational entities which have magnitude and
obtain an appearance on a representational field. This field, in
turn, is conceived as a homogeneously elastic surface. Graphical
points and lines are consequently thought to be stretchable in
any direction along this elastic film.

It is possible to create on a plane animage or representation of
a sphere where there exists a one-to-one correspondence
between the graphical points of the sphere and the graphical
points of the flat-sphere and where the spherical neighbourhood
relations between graphical points are retained on the planar
image. Nevertheless, Flat-Sphere Perspective, whichis developed
in this essay, creates graphical representations where only the
uniqueness requirement is completely fulfilled. In Flat-Sphere
Perspective neighborhood relations are altered around one
point. Perfectly unique and continuous graphical representa-
tions of spherical images on a plane are possible when Flat-
Sphere Perspective is developed into Polar Perspective.

IV. SPHERICAL PERSPECTIVE

In order to obtain the schema for the perspective of the
sphere, the appearance of the three spatial dimensions projected
onto the spherical image surface must be determined. When the
three spatial coordinates are projected onto the CCP picture
plane, and two of the coordinates are made parallel to the plane,
the projection exhibits only one fundamental point of
convergence [5]. On the other hand, the schema for Spherical
Perspective has six and only six fundamental vanishing points.
Evidence for this comes from (1) visual experience and (2) from
the geometry of the sphere.

(1) Visual experience shows that Spherical Perspective must
have six fundamental vanishing points. Consider the following
example. Imagine yourself in interstellar space near three very
long ladders that run perpendicular to each other, and that
correspond to the three spatial dimensions. One ladder runs
below your feet, forwards and backwards. Consequently, you
see this ladder vanishing into a point in front of you. Turning
your gaze towards the back view, you see the ladder vanishing
again towards another point opposite the first. Next, imagine
the second ladder running horizontally directly in front of you.
Moving your gaze to your right you see the horizontal ladder
vanishing into a point, and similarly when you turn your gaze to
the left you see the ladder vanishing into a point opposite the
right one. The case is exactly the same with regard to the vertical
ladder. Looking upwards and downwards you see the ladder
vanishing at two points poles apart, one above you and the other
below you. Thus, visual experience tells us that an all-around
view of the surrounding visual space must create an image with
six and only six fundamental vanishing points.

(2) On a plane surface only two straight lines can be drawn
that intersect each other perpendicularly. The geometry of a
spherical surface, on the other hand, allows one to draw on its
surface three straight lines (great circles) perpendicular to each
other (great circles x, y. z of Fig. 3, top). Moreover, these
three great circles intersect each other at six points evenly spaced
on the surface of the sphere. These are the points where the three
spatial axes (X, Y, Z) intersect the sphere (points P,Q, R, T,S,N
of Fig. 3, top).

The Spherical Perspective schema is created on the surface of
the sphere by drawing the three sets of great circles that
correspond to the X, Y, and Z spatial coordinates. Each set of
great circles converges at two points diametrically opposite to
one another. Figure 3, bottom, exhibits the appearance of the
Spherical Perspective schema on an opaque sphere. Notice that
the three sets of great circles create six and only six points of
convergence exactly in the arrangement that out visual
experience requires them to be.

V. FLAT-SPHERE PERSPECTIVE

Since our perception of the entire visual world must be
conceived as an image projected on our spherical image surface,
the representational artist is faced with the task of transferring
this spherical image onto a flat surface. For it is only when the
spherical image is flattened that we can see the whole image ata
glance. It would be absurd for an artist to create, in this spirit, a
representation of a spherical perceptual image on the inside
walls of a large spherical room, for example. Since we cannot
perceive the sphere of vision at once we could not see the all-
round painting of the scene either. So, the artist must deal with
the problem of how to flatten the spherical image if he is to
create a representation that fits our narrow, instantaneous sense
of sight. But how can a sphere be flattened?

A familiar method of mapping a sphere onto a plane is
through stereographic projection. This method is nevertheless
useless to the artist, because the full sphere maps only on an
infinitely large plane. In order to obtain a flat and finite
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representation of a full spherical surface, [ propose mapping the
sphere onto a plane through a purely graphical method. The
sphere and the plane are made to touch at points § and §’
respectively. Now conceive of the spherical image as a
homogeneous elastic film, and imagine flatteningit on the plane
after piercing it at point N, as illustrated in Fig. 4.

By this method the entire spherical image-surface is flattened
onto a finite plane—there is no part of the spherical image
surface which is not present in the flat-sphere image. (Clearly,
the topological alteration that the sphere undergoes when it is
pierced at point N changes the graphical neighbourhood
relationships in the vicinity of point N. This and other related
issues are discussed in the last section of this paper.)

The flat-sphere obtained by this method is not an arbitrarily
bounded representation, like a CCP representation. Far from
being a window-like representation, the flat-sphere obtains its

N
/ :S, \
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/ :s’ \
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Fig. 4. Graphical representation of a sphere being flattened.

boundary at the very point where the entire sphere of vision has
been completely represented. When graphical point Nis pierced
and the sphere is flattened, graphical point N stretches
latitudinally so as to become the whole circumference of the flat-
sphere (graphical point N'). All graphical points of the sphere
will stretch latitudinally except point S [6]. Figure 5 illustrates
the flat-sphere schema, i.e. the spherical perspective schema
flattened in the manner explained above. Figure 6, which was
created on the basis of this Flat-Sphere Perspective schema,
exhibits 24 cubes in Flat-Sphere Perspective.

When we look at an image created with Flat-Sphere
Perspective, we have the extraordinary experience of seeing—by
virtue of the illusion created by the representation—in every
direction at once.

When a spherical image is flattened, two things are mapped
onto the representational plane: (1) the spherical surface (the
graphical set of points which constitute the spherical image
surface), and (2) the perspective image on the spherical surface.
The geometrical properties of the sphere are automatically
mapped onto the plane when the spherical image, or the

Fig. 6. Twenty-four cubes in Flat-Sphere Perspective.



on has
ierced
-etches
1e flat-
sphere
strates
chema
h was
chema,

sphere

g—by
every

apped
:e (the
image
irface.
tically
or the

chema.

Flar-Sphere Perspective 5

spherical schema, is mapped o‘mo.the representational pl;ne.
This happens because the sphgrlcal image itself, or the spheqcal
schema itself, carries |mplxc1}tly the geometry of a lsphf:ncal
surface. Consequently, mapping a spherlcal perspective image
onto a plane implies mapping a sphcrlczl! surface onto a plane.
The schema of Fig. 5is thus a representation on a flat surface of
a spherical surface on which th}erc Is a perspective grid.

The examination of the last illustrations should make clear
how the three sets of great circles create a three-dimensional,
entirely illusionistic space. Unlike CCP, in Spherical Perspective
and in Flat-Sphere Perspective none of the three dimensions of
the image is parallel to the representational plane or parallel to
the spherical image-surface. The three spatial dimensions
represented by Spherical Perspective and Flat-Sphere Perspective
are dimensions that vanish in the distance, creating the
phenomenon of convergence. Spherical Perspective and Flat-
Sphere Perspective free the spatial dimensions of the image from
the dimensions of the image-surface.

For this reason, the non-Euclidean properties of the spherical
image-surface are not transferred to the image itself, The
geometry of the three-dimensional space represented in a Flat-
Sphere Perspective image is therefore not necessarily non-
Euclidean. Notwithstanding the curvilinear appearance of the
Flat-Sphere Perspective schema, the space represented by those
curved lines may be Euclidean or non-Euclidean. The lines of
the Flat-Sphere Perspective schema are curved not because they
represent a non-Euclidean three-dimensional space, but because
they are great circles of the sphere which have been flattened.
Flattened great circles become curved lines on a plane.
Consequently, the curvilinear appearance of the Flat-Sphere
Perspective schema is a manifestation of the non-Euclidean
nature of the spherical visual field and not a manifestation of the
spatial properties of the physical world represented in the image
that appears on the field. In other words, even if physical space
were Euclidean, its image projected onto a spherical visual field
and then flattened would appear curvilinear in the manner
illustrated. To repeat, a Flat-Sphere Perspective image implies
nothing about the geometry of the space it represents; this space
may be Euclidean or non-Euclidean. In fact, it will be shown
that the great representational potential of Flat-Sphere
perspective rests precisely on this fact, i.e. on the fact that, unlike
CCP, it is a system of representation where the spatial
dimensions of the image itself are completely independent from
the dimensions of the image-surface.

Itis important to realize that a spherical image-surface may be
flattened in any direction. In the illustrations, the point from
which the sphere was flattened, point S (the central mapping
pointy coincides with one of the fundamental converging points
of the schema. However, this need not always be the case. One
may choose to map a sphere from any point on its surface. Thus,
any point of the image on the spherical surface may become the
central mapping point. In each case, the resulting flat-sphere
image will have a different appearance than in the other maps.
Hence, one spherical image can, in principle, yield an infinite
number of isomorphic flat-sphere images.

A very conspicuous feature of the Flat-Sphere Perspective
schema of Fig. 5 is that five of the fundamental vanishing points
appear as points of convergence, but vanishing point N appears
as a divergent point. Due to the distortion that the sphere
undergoes during the mapping procedure, vanishing point N
becomes divergent point N'. This feature of the flat-sphere
Image is unlike the visual experience that the all-around viewer
would have, for he normally sees at point N a converging
phenomenon similar to the one he sees in the five other
vanishing points. Flat-Sphere Perspective, which closely
duplicates the appearance of the spherical image in many
respects, fails to do so in this respect.

Of the infinite number of mappings possible, only six
mappings create the phenomenon of perspective divergence. It

occurs only when the central mapping point coincides with one
of the fundamental vanishing points. But in those mappings
where this coincidence is not present, the Flat-Sphere
Perspective schemas obtained are asymmetrical in appearance
and exhibit the six fundamental vanishing points as convergent
points (Fig. 7).

Fig. 7. Asymmetrical representation of the Flai-Sphere Perspective
schema.

In these asymetrical mappings the point at the north pole of
the sphere does stretch so as to become the periphery of the flat-
sphere, but it does not become a point of convergence or
divergence since the schema lines do not intersect at this point.
The phenomenon of divergence or convergence exists only in
reference to the appearance of the schema lines; the
phenomenon of stretching, on the other hand, refers to a surface
on which these lines may or may not appear.

VI. MAPPING AND DISTORTION

When a Spherical Perspective image is mapped onto the
representational plane, it undergoes various transformations.
These will be examined under two headings: (1) stretching, and
(2) topological transformations. But before discussing these, it is
necessary to clarify the relationship between a perspective image
and a perspective schema.

A perspective image is a two-dimensional appearance which
creates in the observer the illusion of depth by virtue of the
general linear organization of its elements. Examples of
perspective images are conventional photographic snapshots,
pictures done with CCP (or any other perspective system), and
the perceptual image in the visual field of an observer.

A perspective schema, on the other hand, does not create the
illusion of depth. Rather, it is simply a two-dimensional graph
which either results from an abstraction of the linear perspective
of an image, or is created in advance of an image in order to
produce it. A perspective schema is a diagram that shows three
sets of lines on a graphical plane that correspond in visual space
to the three spatial dimensions.

A perspective schema provides a rwo-dimensional skeleton of
the geomerrical relations within a three-dimensional illusionistic
image. For example, within a CCP image, objects vanish in the
distance. This vanishing phenomenon of the three-dimensional
visual space is abstracted in the schema as the two-dimensional
phenomenon of convergence. In other words, vanishing is a
three-dimensional visual phenomenon; convergence is a two-
dimensional description.
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A perspective schema represents the geometrical structure of
potentially many images. A perspective schema is a tool which
indicates how any number of perspective images can be created.
Conversely, an image done in perspective has one and only one
perspective schema.

Since a schema is a graphical entity abstracted from but
independent of any perspective image, the graphical lines of a
schema can be drawn as thinly or as thickly as is necessary to
communicate the required information. Although the thinner a
graphical line is, while still being visible, the finer a tool for
analysis and construction it is, this will not be the only cnterion
in determining the width of schema lines.

A. Stretching

As mentioned before, when a spherical image is mapped onto
the representational plane, all points of the spherical image
(except point S) undergo latitudinal stretching, which increases
as the distance from point S increases. Thisstretching atfects the
appearance of an image In two respects: (a) if, in actuality, a
physical spherical image on an elastic film is flattened, the image
will get blurry toward the edge, and (b) the proportions of the
objects in the flattened image will be different from the
proportions that these objects have on the spherical image.

1. Blurring of the image. The mapping of the spherical image
onto the representational plane has been repeatedly illustrated
by the analogy of an elastic sphere that is actually flattened on
the plane. This analogy helps in conceptually understanding
that the flat-sphere image retains all the visual information
during the mapping process. When such a spherical image,
which is assumed to be in focus, is actually flattened, it will look
increasingly blurry from point S’ to point N'. That is to say,
outlines and shapes will get less defined and increasingly fuzzy,
colors and values will become washed-out, and textures will
flatten and homogenize as they approach point V.

About this physically flattened blurry image, the following
considerations need to be mentioned. In the first place, this is
not the only kind of flat-sphere image that can be obtained, and
in fact, it is not the flat-sphere image primarily to be considered
here. The flat-sphere image to be considered is an image that is
as sharp and fresh as the original image. This flat-sphere image
can be re-created with the aid of the proper flat-sphere schema.

This is possible by first abstracting the Spherical Perspective
schema from the original spherical image. Then by mapping
this schema onto a plane, after choosing a desired mapping
direction, the corresponding Flat-Sphere Perspective schema is
obtained. Based on this schema, an artist can ‘flesh in’ or
reconstruct on a plane the whole spherical image with as much
sharpness and freshness as desired. The flat-sphere image he
obtains via the schema is as much a mapping of the original
spherical image as the physically flattened blurry image is.

It must be stressed that the actually flattened blurry image is
an image that retains the geometrical structure present in its
spherical state. As the perspective structure of a photographic
image is not altered by printing the photograph in or out of
focus, similarly the perspective of the spherical image is not
altered by its becoming blurry as a result of the physical
flattening. This flattening affects its appearance, not its
perspective structure. That is to say, from the geometrical
analysis of the spherical image and from the geometrical
analysis of the blurry flat-sphere image, the same perspective
schema is abstracted—the only difference being that the two
schemas are on topologically different surfaces.

The blurring phenomenon affects only the flattening of actual
physical spheres; it does not affect the flat-sphere images created
via perspective schemas. The artist therefore is not constrained
by the mechanics of some actually flattened hypothetically
elastic sphere.

2. Distortion. The latitudinal stretching, however, does affect
the appearance of the schema and consequently the appearance

of the image created on its basis in other ways than the blurring
of the image. But again, this happens without altering the
perspective structure of the image.

A spherical image undergoes latitudinal stretching when
mapped onto a plane, regardless of whether the image is
physically flattened or mapped onto the representational plane
via a schema. This stretching is manifested in the ditferent
proportions that objects in the flat-sphere image obtain. Objects
elongate latitudinally, and this elongation clearly changes the
appearance of these objects and also changes the appearance of
the flat-sphere schema in comparison with the spherical schema.
For instance, ‘straight’ lines in the spherical schema (the great
circles) appear as curved lines in the flat-sphere schema. Taking
the spherical image as the standard of appearance, the stretched
flat-sphere image is obviously a distorted image.

But this distortion should not be viewed in a negative light, as
the price paid for a flat representation of a spherical image. On
the contrary, it is precisely in virtue of this distortion that it is
possible to transfer the spherical image onto the flat surface
without changing its internal perspective structure. In general, it
is not possible to represent a spherical surface on a flat surface
without distortion. If an image on a spherical surface isto retain
its internal geometrical structure when mapped onto a plane, the
image must undergo certain transformations (distortions)
which together exhibit the original spherical surface on which
the image appeared. To say that visual space surrounds us is to
say, among other things, that its visual representation on a plane
must be a curved, distorted image. Consequently, these
distortions are the visual manifestations of the spherical nature of
visual space as it is displayed on a plane, and, as such, these
distortions should be welcome as a yet unfamiliar prize [7].

The structure of the flat-sphere schema must reflect the
stretching distortions that the objects represented in the image
undergo. But the lines of the schema themselves are in general
unaffected by the stretching. As was mentioned earlier, the lines
of a schema can be drawn with whatever width the analysis or
construction at hand requires. However, there is one sort of
schema line that in particular is affected by the stretching of the
image.

When a sphere is mapped onto a plane, the schema of this flat-
sphere image has, by necessity, one graphical point of a different
magnitude from all other points of the schema. This is point N,
the circumference of the flat-sphere schema. Point N is a
graphical point larger than any other point of the schema. Since
the geometry of the schema calls for the drawing of segments
that run from point S’ to point N, then such segments will have
to vary their width in order to go from small point S’ as a whole,
to large point N' as a whole.

If the flat-sphere schema were constructed with consistently
thin lines, as illustrated in Fig. 8, top, then the appearance of the
S$’-N’ lines would be that of lines going from point S’ to a point
of point N, i.e. from $" to N'| or to N, or to N’y or to N',.
Graphically, this representation does not duplicate the
geometry of the sphere, for it does not make it visually evident
that N’ is but a point. Moreover, this representation maps great
circles S-N-S as (Euclidean) straight and bounded segments. Of
course, we can understand that these segments represent closed
and boundless lines (i.e. great circles) because they end at the
circumference of the schema which we understand to be just a
point. That is to say, we understand that from point N'|, one is
logically entitled to go to point N'y, which is on the other side of
the representation. But we cannot see this in the appearance of
Fig. 8, top. All other lines of the flat-sphere schema, which are
also mappings of great circles, appear as curved lines that return
to themselves. So, it is desirable that the N'~S’-N’ lines should
also appear as closed lines in the flat-sphere schema. To the
artist, who is interested not only in understanding an image, but
in the visual appearance of it, this disparity is of importance.
The question then, is how could lines N'-5'-N" be drawn so that
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Fig. 8 Two inappropriate representations of schema lines. (Top) The x and

y axes appearing without stretching. (Bottom) Simplified representation of

the actual stretching that a S-N line on a sphere undergoes when physically
Sflattened on a plane.

they conform (1) with the geometrical requirement of going
from the whole of point ' to the whole of point N’, (2) with the
general curvilinear and closed-path appearance of the rest of the
schema lines, and (3) with the basic requirement of any schema
!inc of being thin enough for analysis and construction of
images.

To answer this question, consider first what would be the
appearance of an actual pencil line drawn on the sphere fron S to
N, after the sphere has been physically flattened. If this line is
lhqught of as made of a succession of contiguous graphical
points, then point S, when the sphere is flattened, becomes point
S’ and undergoes no stretching {8]. But the point next to point .S
tn the S-A line will undergo a very small amount of latitudinal
stretching. The point next to this one will undergo a slightly
greater stretching until the last point, point N, undergoes the
most stretching, becoming the circumference of the representa-
tion. This incremental stretching of points is illustrated for
segment S’-N" in Fig. 8, bottom, in a very simplified manner.

Should flat-sphere schemas be drawn with the S'-N’ segments
stretched as illustrated in Fig. 8, bottom? Of course they should
not be. Such lines are far too thick to be helpful asschema lines.
Aft§r all, with a schema one should be able to make graphical
distinctions as fine as possible. Moreover, one should be able to
analyze with the schema lines the very phenomenon of
stretching as it affects image lines. With an expanded line as that
of Fig. 8, bottom, only very crude drawings could be done, and it

would be impossible to analyze the stretching phenomenon
itself.

Yet there is no reason for concern. The area of ambiguity
created by the stretched S$™-N’ line of Fig. 8, bottom, can be
reduced so that the line meets the geometrical requirement of
going from the whole of point S’ to the whole of point N, and it
meets the practical requirement of being a very thin line if
necessary. The schema of Fig. 5 is constructed with such lines.
They are normal thin lines during most of their paths, but as
they approach V', they stretch to cover all of N as required. One
is justified in drawing such lines because, as noted before, they
are graphical lines of a schema and not mathematical lines or
actual pencil lines of a sphere that has been physically flattened.

In this schema, lines N'-S'-A" actually appear as lines havinga
closed and somewhat curvilinear path as all the other lines of the
schema do. This gives the schema a more coherent and
harmonious appearance, for the schema now displays visually
that circumference N’ is just a point in the image.

B. Topological transformations

The sphere and the plane are topologically different surfaces.
The sphere is a closed and finite surface while the plane is an
open and infinite surface. Theretore, it is impossible to map a
sphere onto a plane with perfect continuity and uniqueness. As
Hans Reichenbach points out: ‘a unique and continuous
mapping is possible only for geometrical structures having the
same topology” [9].

1. Continuity. A sphere cannot be mathematically mapped
onto a plane with perfect continuity because neighborhood
relations are disturbed around one, and only one, point. This is
mathematical point n at the north pole of the sphere. Clearly, the
notion of piercing an actual sphere, which is necessary before it
gets flattened, implies some tearing of the spherical surface. In
topology, the piercing is understood as the removal of a
mathematical point (pointn) which makes the ‘spherical’ image-
surface no longer a closed surface, but an open surface. Around
point n, neighbourhood relations are altered, i.e. points around
mathematical point # are separated. The altered neighborhood
relations around this point are conveyed into the graphical
representation of the flat-sphere. To elaborate, imagine that
graphical points 4 and B on the sphere are adjacent to, but at
opposite sides of graphical point N, so that A and B are in
immediate proximity on the sphere, with only point N between
the two.

On the flattened sphere, however, Points 4" and B will appear
far apart from each other at opposite ends of the
representational plane. No matter how stretched points A" and
B’ may appear on the flat-sphere, they still appear, generally
speaking, at opposite sides of the representation. Clearly then,
around point N’ the graphical as well as the mathematical
neighborhood relations have been disturbed. Nevertheless, it
shall be shown in an ensuing paper that these graphical
neighborhood relations can be restored by the creation of a
polar image.

It is important to understand that the elimination of
mathematical point n does not cause any visual information to
be left out of the mapping. Since the mathematical point is
extentionless, its removal takes nothing away from the spherical
visual expanse. Point /' in the above discussion is not meant to
represent the mathematical point that is eliminated. Rather in
these discussions, N’ must be conceived as the mapping of
graphical point N on the sphere, which is actually asmall doton
the north pole of the spherical surface. The eliminated
mathematical point must be conceived accordingly as the center
of graphical point N. In terms of the piercing analogy, this
means that the sphere is pierced in the center of graphical point
N.

2. Uniqueness. A perfect mathematical mapping requires that
there should be a one-to-one correspondence between the set of



8 Fernando R. Casas

mathematical points on the sphere and the set of points on the
plane. Since a sphere cannot be flattened without first removing
a mathematical point from it, it is clear that the uniqueness
requirement cannot be fultilled in the attempt to create a flat
mathematical map of a sphere. Removed point 7 of the sphere
will have no corresponding point in the plane.

But on the other hand, a graphical mapping of a sphere onto a
plane is possible with perfect uniqueness, i.e. for any graphical
point on the sphere there is a corresponding graphical point on
the plane.

It may be thought that because graphical point N is larger
than graphical point N, there is not a one-to-one corre-
spondence between these two graphical points. That is to say,
because it is possible to identify many other points within point
N, then there actually are many points comprising N’ on the flat-
sphere corresponding to graphical point N on the sphere. But
this is not really the case. The fact that within enlarged point N’
many other graphical points could be identified does not affect

Fig. 9. 'The Measure of All Things', five-color lithograph, 60x 90 cm,
1979.

Fig. 10. ‘The Sky, Noon', oil on canvas, 1.7 x 1.7 m, 1980.

Fig. 11. 'The Planer, Early Morning', oil on canvas, 1.7 x 1.7 m, 1980.

the uniqueness with which point N is mapped. After all, within
the small graphical point N on the sphere, many other points
could be identified as well if the point is examined with a
magnifying glass. Within any graphical point, it is possible to
identify—at least in principle—other graphical points.

To reiterate, having to remove a mathematical point from a
sphere before it is possible to map itonto a plane implies that the
‘flat-sphere’ obtained is not a complete mathematical map of the
sphere. On the other hand, having to pierce a spherical image
before it is flattened does not imply that the flat-sphere image is
incomplete with respect to the spherical image. The flat-sphere
is a graphical representation of the entire spherical image where
the uniqueness requirement is satistied. Neighborhood relations
on this graphical representation, nonetheless, are altered
around one point. But this alteration can be restored when a
spherical image is flattened in accordance with the principles of
Polar Perspective to be explained in an ensuing paper. Four
examples of my artwork in which Flat-Sphere Perspective has
been used are shown in Figs. 9-11 and Color Plate 2.

REFERENCES AND NOTES

1. The concept of visual field in this work is understood as a two-
dimensional expanse on which the perceptual image appears.

2. A Perspective schema is a diagram that shows the appearance that
three sets of straight, continuous lines have for an observer from his
given point of view. Each set of lines is represented as running along
one of the three spatial dimensions, i.e. the sets of lines that are
perpendicular to each other. In other words, a schema is a two-
dimensional grid that defines the appearance of the three spatial
dimensions for a given observer.

3. The name Central Convergent Perspective in this work does not
refer to the general principles of projective geometry, which can
determine the geometry of any image projected on a plane. Rather,
the name refers to (1) the inadequate analysis, prevalent since the
Renaissance, of a perceptual image and (2) to the principles for the
construction of visual representation derived from this analysis,
which together comprise Central Convergent Perspective.

4. See for instance R. Vero's Understanding Perspective (New York:
Van Nostrand Reinhold, 1980).

5. However complex a CCP construction is (two-point or three-point
perspective), the illusionistic CCP space has only one fundamental
vanishing point, i.e. the point where all the lines parallel to the z-axis
vanish.
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6. The sphere need not be considered to stretch only latitudinally. An Leutwyler, to whom [ am also indebted for his aid in developing

artist may introduce longitudinal stretching so as to control the some of these ideas and for editing the manuscript.

ance that objects will obtain on the flat-sphere image. 9. H. Reichenbach, The Philosophy of Space and Time (New York:
hout this work, the term visual space has been used to mark Dover, 1957) p. 66.

[Editor's note—Kenneth R. Adams has described his method of
depiction for a 360°-view from a point in space in ‘Tetraconic
Perspective for a Complete Sphere of Vision®, Leonardo 9, 289-291

appear

7. Throug f
this purely perceptual sense of space apart from physical space.

Absolutely no claims are being made in this work about the

geometrical structure of physical space.
8. This approach to the question was suggested to me by Bruce (1976).]

1. 1980.
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