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Polar Perspective: A Graphical System for
Creating Two-Dimensional Images Representing
a World of Four Dimensions

Fernando R. Casas

Abstract—The author introduces n system of perspective called Polar Perspective. He explaing in
nantechnical terms the struciure of polar perspective images and how o construet them. Using guslar
perspective, the artist can croale perspective Images that represent not only the three spatial dimensions, bul
wlso the dimension of time, Moreover, the artist can apply polar perspective (o crente perspective images tha |
represent In a visnally coherent und unambigoous fashion 0 world of four spatinl dimensions.

L INTRODUCTION

How do the three spatial dimensions of
the visual world project (or map) on o
surlace (or picture)? Imagine a structure
of three wooden poles that intersect each
other perpendicularly. Each pole rep-
resents one of the three spatial
dimensions of the world, The person
interested in perspective wants to lind out
what kind of image these three poles
create on the visual field of a human
observer.

Classical perspective (also  called
central convergence perspective), which
was  developed mainly during the
Renaissance, gives one explanation.
According to classical perspective, the
visual image that an observer has in his
visual field at a given moment is identical
to the image that would be created on
Mat window placed between the observer
and the object observed. This setup,
illustrated in  Fig. la, is classical
perspective’s model of visual perception.
This model likens the visual field of the
observer to n flar surface called the
picture plane. For the last 400 years,
classical perspective has allowed the artist
to create remarkably ‘realistic’ images of
the world that, when ploced in
appropriate circumstances, were able 1o
fool*the eye. Examining Fig. la, we can
see that the three spatial dimensions of
the visual world (axes X, Y, Z) project
onto the picture plane a perspective grid
with one and only one vanishing point.
This is point V, where the projected lines
of axes X, Y and Z intersect,

In spite of its remarkable realism,
classical perspective creates nnomalous
images. When we strictly follow the rules
of image construction according 1o
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classical perspective, we end up creating
images that do not accord with the way
weactually see the world, This disparity is
mare evident in some images than others,
The notorious column paradox is one
example [1]. Such mnomalies ean be
avoided by altering the model of visual
perception offered by  classical per-
spective. This can be accomplished by
conceiving of the human visual field not
as a flat surface. but as a concave surface
[2]

We are completely surrounded by the
visual world. We can turn our gaze in any
direction and see a different portion of
the visual world. This is illustrated in Fig.
Ib as & spherical surface with an observer
it its center, The spherical surface, which
replaces the flat picture plane model of
the visual field, carries on (ts surface the
image of the entire surrounding visual
world. Regardless how narrow our
instantaneous visual field, our sphere of
vision includes all the visual data of our
surroundings. This raises two questions,
First, what kind of image do the three
dimensions of the visual world project
onto this spherical visual field? Secand,
imagine that we could see all around
ourselves at once. How might we
represent on a flat surface this visual
experience? | have answered the first
question with spherical perspective, and
the second with flat-sphere perspective
3%

Figure b illustrates an observer
surrounded by his spherical visual field.
The three spatial dimensions are
represented by axes X, ¥ and Z. When
these axes are mapped onto the spherical
visual field of the observer, they create &
perspective grid, the group of lines that
arganize on the spherical surface the
dppearance of the three spatial dimen-
sions presented to the observer. This grid

two advantages over classical perspeative.
First, spherical perspective dissolves the
anomalies that classical perspective gives
rise 10. Second, spherical perspective
organizes in a single continuous image
the whole surrounding visual world,
rather thin only a portion of it,

An artist interested in using spherical
perspective might find one importam

Figure | {a) Classical perspective’s model of
visunl perception. The three axes of the visual
world—X, Y, Z—map on the pleture plane in
frant af observer O, crenting o perspective grid
with anly one vanishing point, V. (I) Spherical
perspective's model of visual perception, The
abserver O is at the center of his spherical visaal

r:"'““n.“n*m' H“H;:"{ TX 7733 USA. has  six  fundamental points  of  flold, The three axes of the visual world create a
SRRGEINE RY Tanuisry 1983) convergence. Spherical perspective has  grid with six vanishing painis N, S, P, O, R, T.
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shortcoming in the svstem; spherical
pcrspcclivc images can be created only on
spherical surfaces. Conscequently, just as
we cannot see in one glance the entire
visual space that surrounds us, we cannot
see in a glance the entire spherical
pcrspcctivc image, whether the image is
on the outside surface of a sphere or on
the inside surface of a large spherical
room. For instance, when faced with a
spherical mirror or with a spherical
perspective image painted on the surface
ol a balloon, we can see only one side of
the batloon or the mirror at a time. We
need to move around the balloon in order
to see the rest of the image and around the
sphcricul mirror to see the visual space
retlected on the other side of the mirror
(51

Flattening the spherical image results
in a perspective image of the entire visual
world that can be seen at one glance. This
concept led to the flat-sphere perspective
system of representing the surrounding
visual world on a flat surface. I conceived
the sphere of vision to be elastic like a
balloon. I could pierce it at a point on its
surface and then stretch it into a flat disk.
The point at which the sphere is pierced
becomes the perimeter of the disk. The
disk contains the whole of the spherical
image. and it can be seen at a glance.

The spherical  perspective  image
undergoes  various transformations
during flattening. For instance, the
straight lines of the spherical image
become curved in the flattened image. Yet
‘distortions’ like this are actually the
visual manifestation on a flat surface of
the spherical nature of the visual image.
The perspective of the spherical image
transferred into the flat-sphere image—
the geometrical organization of its
perspective  grid—remains  unaltered.
There is, however, one graphical point in
the spherical image, and one point only,
where its perspective organization is
altered by the flattening procedure. This
is the point where the spherical image is
pierced priorto being flattened. Efforts to
Overcome this limitation of flat-sphere
Perspective (which will be explained in
more detail later) led me to polar
Perspective,

Polar perspective is a further develop-
Ment in the field of perspective
Tepresentation. Polar perspective does
R0t replace  flat-sphere perspective.
Ralher, both flat-sphere perspective and

_SSical perspective are special cases
Mithin the more general system of polar
PCF'Spec[ivc_ Using polar perspective, the
st can create images that represent not
only l_ht‘ three spatial dimensions but also
dimension of time. The system also

all . .
OWs the artist to construct tmages that

represent in a coherent and unambiguous
manner four spatial dimensions.

Polar perspective is developed here as a
purely graphical system, not as a
mathematical system. The concepts of
point, line and surface are understood to
stand for graphical elements that we can
see. A graphical point, far from being a
zero-dimensional entity, is roughly a dot
on a surface. A line is the sort of
elongated trace that an instrument such
as a pencil leaves on a surface. In
accordance with the elastic surface
mentioned above, the points and lines
referred to here are graphical entities that
can stretch in any direction along the
surface in which they appear.

The following sections explain in

simple terms the perspective structure of
polar images and how to build thém.
Questions about how to translate this
graphical system into a mathematical
system and its relationship to theories in
physics regarding the fourth dimension
are not considered here.

[1. CONCENTRIC POLAR IMAGES

An image created with polar per-
spective Is produced when two or more
flat-sphere images are connected to form
a new, perfectly unified, coherent and
continuous image. Figure 2 shows a
painting created with polar perspective.
Notice that there is a full flat-sphere
image in the central portion of this image.

Figure 2. The Polar Eye, four-color lithograph, 36 x 24 inches, 1980. This is an example of a simple
polar image that contains two flat spheres. Only the enclosed flat sphere appears in its entirety.
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This  flat surrounded® by
another flat-sphere image. (The outer

sphere 1s

periphery of the surrounding flat-sphere
image has been left out for aesthetic
reasons. In principle, it could have been
represented.) This section will describe
how to create a polar image like that of
Fig. 2 and the logic behind it.

If a person’s visual ficld were such that
he could see all around himself at once,
his visual field would exactty correspond
to his sphere of vision. For this analysis,
we will assume a hypothetical observer
whose visual field exactly corresponds to
his sphere of vision. Since objects in his
sphere of vision may be in motion, our
hypothetical may
different image in his visual field at any
given moment. Let us imagine this new
spherical image placed next to the first
image. We can continue adding to our
collection of spherical images by making
cach new sphere represent an instan-
tancous image obtained on the sphere of
vision of our hypothetical observer. The
images may be different, but all of them
have the same perspective structure.

Figure 3 illustrates a sequence of four
such spheres. On the surface of each
sphere, we have drawn their perspective
structures, so that each sphere displays
the same grid of spherical perspective.
Notice that each sphere has the same six
vanishing points—N, S, T, P, Q and R.
Now notice a most important feature of
this image: the spheres are not simply one
next to another; they are connected in
such manner that two contiguous spheres
share the same graphical point. For
instance, spheres 1 and 2 share point S;

observer have a

Figure 4. Polar perspective grid of a polar image with two concentric flat spheres.

spheres 2 and 3 share point N: and
spheres 3 and 4 share point S again, etc,

This string of spheres can be flattened
onto a flat surface in a manner similar to
the way a single spherical image s
flattened in flat-sphere perspective. This
is also illustrated in Fig. 3, where we can

—

Pz

Figure 3. A string of spherical visual fields displaying their identical perspective grids. The spheres are
connected continuously because each sphere shares a graphical point with both its neighbors. Sphere 1

has already been pierced and is being

190

flattened onto the representational plane.
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see sphere number | already pierced and
in the process of expanding over the
representational plane. After sphere | has
been flattened, point S of spheres | and 2
is pierced and sphere 2 is flattened onto
the plane, displacing outwardly the
already flattened sphere number 1. Next,
point N of spheres 2 and 3 is pierced and
sphere number 3 is flattened. And so on.
In this manner, we obtain on the
representational plane a polar image that
looks like a sequence of concentric rings.
Figure 4 shows the perspective grid of
polar perspective obtained in this
manner. This figure contains only two
flat spheres, but it is possible to continue
the sequence by adding as many flat
spheres to the grid as we wish.

The following features are basic to
understanding the visual organization of
a polar image.

I. A polar image is a single and
continuous image. It appears to be a ring
and a disk: a ‘surrounding’, ring-like, flat-
sphere image with a second ‘enclosed’
disk-like image in its center. Actually, a
polar image is one coherent whole that
represents a single sphere of vision; it has
no visual discontinuities.

Notice that the enclosed flat-sphere
image is, in relation to the surrounding
one, nothing but its middle graphical
point. The surrounding flat sphere in Fig.

]
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2(0

¢ in the grid of Fig. 4), is not a flat

s drawnon
thr; ﬁlr‘::::loscd flat sphere as some
hat -i::nmlcriul filling the hole inside the
f‘.)rchhc surrounding flat sphere is a
nn% potarngs it only happens to haveits
tiut‘ru] vanishing point, N’, enlarged as a
.:nu“ ol being stretehed in the mapping
;:.s flattening) procedure. Within  the
. tral vanishing point of the
flat sphere, the enclosed flat
This enclosed flat sphere

to aring-like surface that

(or
enlarged. ¢t
surrounding

yphere appedrs: .
p, 1 relauon to the surrounding one,

only 115 central vanishing point. What we
o then, is d representation of a single

have. . . .
v with some of its points

sphere of visiot
more OF jess stretehed.

Let us use MIrrors as an analogy to
explain further the relation between two
or more Hlat=s phercimages which are part
of i polar image. In a polar image the
enclosed” flat sphere) occupies no visual
the swarrounding” flat sphere, and vice
versa. However, this mirroring relation-
ship is such that the mirror itself does not
exist us part of the world it reflects.

A mirror ball in our physical world can
reflect the entire visual world that
surrounds it, but it cannot capture the
world inside its own volume. In a polar
image, however, the mirror itselt (an
‘enclosed’ flat sphere) occupies no visual
space within the world it mirrors, i.c.
within the ‘surrounding’ flat sphere
image. Any flat sphere which is part of a
polar image is like a spherical mirror of
zero dimensions. It is a spherical mirror
that has no visual or physical presence in
the world it reflects, for this spherical
mirror does not hide trom view any
portion of the visual world it reflects—it
does not belong to the world it mirrors.

The single polar image is also a visually
continuous image. Point N™is the point of
connection between the two flat spheres;
both flat spheres share this point.
Consequently, the eye can travel from
one flat sphere into the other without
interruption. The moment the eye arrives
at point N’ of one flat sphere, it also
arrives at point N’ of the contiguous flat
sphere. In sum, point N’ visually bridges
both flat spheres into a single and
continuous image.

2. The second important feature of
polar images is represented in Fig. 4.
Notice that the lines which go from point
N" 10 S’ to N’ again, to S again, etc. do
not look like straight lines because their
widths vary in a pronounced way at
c.crtain places in the representation. The
lines stretch their widths to egncompass
the whole of stretched graphical points N’
and S’ as the lines meet these points at the
poles of each flat sphere. Any line that
belongs to the perspective grid of the flat

sphere images and that crosses the
boundary between two flat spheres must
necessarily  stretch  circularly in the
manner illustrated. It is precisely this
stretching of the grid lines that makes the
circumference of any enclosed flat sphere
function as a vanishing point relative to
both the ‘surrounding’ and the ‘enclosed’
flat spheres. This feature of polar
perspective is particularly relevant to
polar images of four dimensions.

3. The concentric polar image can
represent not only the three spatial
dimensions of our visual world, but also
the dimension of time. Given that each
flat sphere within a polar image is the
mapping of a distinct spherical image
occurring sequentially in time, each flat
sphere represents a different moment in
this time sequence. Consequently, the
polar image as a whole is a single.
coherent representation of our visual
world along a time span.

Like the rings of old trees that record
and exhibit the passage of time. a
concentric polar image can show—in a
discontinuous tfashion—the movement of
perceived objects in space and time. This
is accomplished by making each flat
sphere portray the object in a different
location as the object changes its position
in time. Flora (see color plate No 4) shows

a work of art using this device. The
painting depicts Flora, the goddess of life,
at two different instants in time. In the
surrounding tlat sphere Flora stands by a
window with blooming trees. In the
enclosed flat sphere, Flora walks into the
adjacent _room where a rocking chair
awaits her.

A polar image can also show the
observer’s movement. The image of each
flat sphere can represent the visual world
from a different location, revealing that
the observer has changed his point of
view. In ‘this case also, although the
representation of time is an integral part
of the polar image, the time sequence is
represented in a discontinuous fashion.
We jump from one moment in time to
another. visually crossing the border
between one tlat sphere and the next.

111. ECCENTRIC POLAR IMAGES

The previous section explained how
flattening a string of continuous spherical
images produces a polar image with
concentric ftat spheres. For the same
reasons that it is possible to create a tlat
sphere image inside the central vanishing
point of another image, it is also possible
to create a flat sphere image inside any of

T

3
v

v
R

Figure 5. Perspective grid of a polar image with many concentric and eccentric flat spheres.
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the vanishing points of another flat
sphere image. Proceeding in this fashion,
we create cecentric polarimages. Figure 5
illustrates the perspective grid of a polar
image with many concentric flat spheres
and many eccentric flat spheres.

Now we are in a position to explain the
shortcoming of flat sphere perspective
that polar perspective remedies, When a
single flat sphere is Hattened, as in the
enclosed flat sphere of Fig. 4, one of the
vanishing points of the image, point N’ of
Fig. 4, undergoes a profound alteration.
On the spherical surface, before the
Hattening process, point N’ adequately
represents a vanishing point because the
grid lines converge on the point. But after
the spherical image has been flattened,
the lines of the perspective grid diverge on
this point. Point N is transtormed from a
point of convergence into a point of
divergence. The graphical appearance of
point N" has changed, making it different
from the graphical appearance of the
other five vanishing points, which remain
as points of convergence.

When we build a polar perspective
image, however, this disparity disappears.
Notice, for example, in the polar
perspective grid of Fig. 5. that in every
case the divergent vanishing point of an
enclosed flat sphere becomes a point of
convergence relative to the surrounding
flat sphere. Thus, in principle, in a polar
image all vanishing points behave con-
sistently in that they are points of
convergence in one flat sphere and points
of divergence in another [6]. The three-
dimensional model of the grid in Fig. 5
consists of a stack of many (perhaps
infinite) spherical images, each having
neighboring spherical images on all six
sides. A simplified model of this
arrangement consists of six spherical
images  connected in  the manner
illustrated in Fig. 6.

IV. POLAR IMAGES OF MORE THAN
THREE DIMENSIONS

A simple polar image of the type so far
discussed represents a three-dimensional
space. Implicit in those images is a fourth
spatial dimension (4-D). This dimension
is clearly depicted in Fig. 3 as dimension
Pz. Remember that each sphere of vision
contains on its surface a perspective
image of a three-dimensional world. In
the construction of a polar image, these
spheres  of wvision, along with their
respective images, are connected along
dimension Pz Dimension Pz is different
from the three dimensions contained on
the spherical images. Pz is also different
from the two dimensions of the spherical

192

Figure 6, Seven spheres of vision connected by shared points along dimensions Pz, Py and Px.

surfaces themselves. Yet dimension Pz is
a dimension that necessarily, if only
implicitly, enters into the construction of
a polar image. After all, a polarimage is a
construction that is able to connect two
or more flat sphere images in a
continuous and unified manner, precisely
by connecting these flat spheres along a
spatial dimension different from any of
the spatial dimensions contained on the
flat spheres.

To create a four-dimensional 1mage, Pz
must be drawn alongside the original
three dimensions of the image in a
coherent and nonambiguous manner. In
other words, if dimension Pz can function
as a fourth dimension relative to the other
three, then we should be able to draw
dimension Pz in a polar image without
confusing it with any of the other three
dimensions or upsetting the initial three-
dimensional world. Figures 7 and 8
demonstrate that these two conditions
are met by the mapping of dimension Pz.

First, let us recall that the depthlines of
cach flat sphere (the lines that go from N’
to S’ to N, etc.) must stretch in a circular
fashion at the borders between one flat
sphere and the next. When we map
dimension Pz onto a polar image, the
obvious dangeris of confusing the lines of
dimension Pz with the depth lines. Notice
in Fig. 7 how these two groups of lines are
not confused with each other. This is
because the 4-D lines do not have to
stretch in the same manner as the N' -§°
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~N"lines. In fact, the 4-D lines are able to
run unaltered from one flat sphere to the
next. This is because the Pz axis (or any
line parallel to it) does not have to cover
the whole of graphical points N', §", N',
etc., in its path. [t is this difference in
appearance and behavior between the
lines parallel to Pz and the depth lines of
each flat sphere that makes possible the
construction of an unambiguous four-
dimensional image.

Figure 8 is an example of a four-
dimensional image. This painting shows
two flat sphere images making up a polar
image of a room. This room represents
our familiar three-dimensional world.
But over and above this three-
dimensional world, we see a man and his
dog, both in the room (in the three-
dimensional world) and projected alonga
fourth representational dimension [7].
Notice that this dimension appears
unambiguously as a fourth representa-
tional dimension of the perspective
system. This new fourth dimension does
not alter the original three-dimensional
world; rather, this fourth dimension is
integrated in the image.

Figure 7 illustrates the perspective grid
of four-dimensional images such as that
of Fig. 8. The grid displays four sets of
lines: (1) the width lines, which extend
across vanishing points P’ and Q' while
remaining within their respective flat
spheres; (2) the height lines, which extend
across vanishing points T' and R’ while




\P // remaining within thc'ir respective flat 1
\" I o / spheres: (3) the depth lines, which extend
N i y' 1\‘\\(\ across vanishing points N and S’ while 4
g - \////”—-1—“\\\ /T remaining within their respective flat

. AN T‘l _Z\\\ . spheres, and (4) the four-dimensional \‘

lines, which extend across the whole of i
the polar image and do not have to :
remain contained within the individual
flat spheres. They start at vanishing point
S" at the center of the image and extend
outward. (These lines will eventually
vanish at another point N’ not
represented in this grid.)

We have scen that dimension Pz works
graphically as a fourth dimension relative
to the other three. It can be mapped in a :
consistent and unambiguous manner
together with the three original dimen-
sions of the tlat spheres. But what reason
do we have to consider dimension Pz as a
dimension perpendicular to the threc
dimensions contained within each flat
sphere?

Dimension Pz is perpendicular to the
spherical surfaces that represent the
sphere of vision. These spherical surfaces
create the illusion—for an observer—ofa
three-dimensional world. Thus, cach
spherical surface contains a three- | ‘
dimensional, purely illusionary world.

- ) ) . . o We take. then, a dimension Pz, which is
F|g1'xrff 7. The 'pc.rspectlve, gnfi of a four-dlmen?mnal.lmage' like the one shown in Fig. 8. This gl.'ld perpendicular to these spherical surfaces, |
exhibits four distinct sets of lines. The fourth-dimensional lines are those that cross the boundaries
between one flat sphere and another unaltered.

as a dimension perpendicular to the three o
dimensions contained in each of those
surfaces [8].

Figure 6 is the model of a polar image
with concentric and eccentric flat spheres
representing seven spheres of vision.
Imagine that we map the sixouter spheres
of vision onto the surface of the central ‘
sphere of vision. We obtain one sphere of

vision that contains six ‘flat spheres’ on
its surface. This mapping introduces into
the image of the central sphere the
dimensions Px, Py and Pz represented in
Fig. 6. These three lines are actually four-
dimensional lines relative to the three
dimensions contained in the central
sphere of vision. This is so because these .
three lines are perpendicular to the
surface of the central sphere of vision, as i
is any other line that is the radius of the .
central sphere. .
A hypercube (Fig. 9) further illustrates o
the construction of pelar four-dimen- i
sional images. In it we can see a body
made of eight cubes: one cube appearing
in each of the two flat spheres, and six
more cubes created by the faces of the
first two cubes when these faces are
consistently connected along a fourth
dimension. Inspite of its first appearance,
this image is not to be read as a cube

JEPRSPPRT £olia (W

R

Figure 8. Stephen and Rufus, oi! on panel 70 x 48 inches, 1982. A man and his dog proj

. s , s . ject alonga . ., . .

fourth dimension representing their movement through time. To construct the figure, one of the two flat inside a cul?e. Thc. Cl%be in the encl(‘)sed

spheres is turned inside out, a nccessary inversion for the flat spheres to connect in the manner flat sphere is not inside the cube of the
represented. surrounding flat sphere. Rather, the
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Figure 9. A hypercube drawn with polar perspective. Two flat spheres, each containing a diagram of a
cube, form a polar image. The vertices of each of the two cubes are connected along a fourth dimension,
creating a hypercube. An inversion, similar to that mentioned in Fig. 8, was introduced to create this

figure.

perspective lines indicate that the first
cube is further away from the observer
than the second cube along a fourth
dimension, as explained above.
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F. R. Casas, “Flat Sphere Perspective™,
Leonardo 16, 1-9 (1983),
Artist Richard Termes of South Dakota
has also worked out the six-point
spherical perspective structure. Mr
Termes uses the system to paint images
on the exterior surface of large spheres.
K. R. Adams has described another
method for depicting the entire sphere of
vision (“Tetrasonic Perspective for a
Complete Sphere of Vision™, Leonardo 9,
289-291, 1976). However, his tetraconic
system creates a discontinuous image, an
image broken up in discrete facets.
M. C. Escher produced several images
that indicate this limitation of visual
field. Some of his prints show the convex
image he saw reflected on one side of a
mirror ball. He did not create any image
that couid depict the entire visual space
around or reflected by the mirror ball.
In the field of perspective, Escher’s
most substantial contribution, to my
knowledge, is the development of
cylindrical perspective. Cylindrical per-
spective results from projecting the three
spatial dimensions onto a portion of a
cyclindrical surface. This projection
creates a grid with three vanishing points
of convergence, as is clearly evidentin his
print House of Stairs and even more
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“actually a dimension perpendicular to the

evident iq the perspective grid
prepared for the construction of lhg
print. This grid is reproduced ip 1yl
Locher, ed., The World of M. C. Ef;‘h "
(New York: Harry N. Abrams,
1971).

Any actual .polur image we construg -
however, will be inconsistent in thi .
regu‘r.d.bcczlusc the polil‘l‘ image wil| have ¢
a finite  number of flat Sphereg *
Consequently, the flut sphere at ope Cn‘i ]
of the finite sequence will have only 5
point of divergence and the flat Sphere 3
the other end of the sequence, only 5
point of convergence.

The t'our—dimcnsiunal linesin Fig. 8 have
been cut in many Ihrcc—dimensiona] ’
slices. This was done for aesthetic and
historical reasons. The t"our-dimensi()nal
lines in polar perspective can be drawn
with solid, unbroken lines.

It is possible to represent a fourth
dimension  only  when  the  three
dimensions on the image surface have ap
equal status and are independent of the
dimensions of the image surface itself, If
one or two of the dimensions of the image
coincide with  ecither of the two
dimensions of the image surface, as is the
case in classical perspective and
cylindrical perspective, then a dimension
perpendicular to the image surface would
be ambiguous. It could not then
represent a fourth dimension relative to
the three dimensions of the image. In
classical perspective, two dimensions of
the image are not-independent of the
dimensions of the surface on which they
appear. Therefore, a dimension perpen-
dicular to the plane of representation is
actually the third—the depth—dimension
of the image. In cylindrical perspective,
only one of the dimensions of the image is
not independent of the dimensions of the
representational plane. The other two
dimensions  are  wholly illusionary.
Therefore, a dimension perpendicular to
the cylindrical surface (or to the flat
surface after the cylindrical image has
been flattened) is a dimension different
from the other three dimensions of the
image, but not equally different. This
dimension is actually perpendicular only
to the dimension of the image that
coincides with one of the dimensions of
the image surface, but it is perpendicular
to the other two dimensions of the image
in a purely illusionary sense.

It may be important at this point to
clarify the status of the fourth graphical
dimension in relation to the other three.
The first three dimensions are equally
illusionary dimensions relative to the
image surface on which they appear. But
polar dimension Pz is not an illusionar'y
dimension relative to this surface. It 1
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image surface. From a purely graphical
point of view, this disparity between Pz
and the other three dimensions is no
more troubling than the disparity 1
classical perspective between the dCP"h
dimension which is purely illusionistic
and the other two dimensions of the
image which are not independent of the
representational surface.




